- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Dawe, R. Kelly (2)
-
Fu, Fang-Fang (2)
-
Gent, Jonathan I. (2)
-
Swentowsky, Kyle W. (2)
-
Zeng, Yibing (2)
-
Anderson, Sarah N. (1)
-
Higgins, Kaitlin M. (1)
-
Kim, Dong Won (1)
-
Kim, Dong won (1)
-
Liu, Jianing (1)
-
Piri, Rebecca D. (1)
-
Springer, Nathan M. (1)
-
Wang, Na (1)
-
Zhang, Han (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Centromeres are long, often repetitive regions of genomes that bind kinetochore proteins and ensure normal chromosome segregation. Engineering centromeres that function in vivo has proven to be difficult. Here we describe a tethering approach that activates functional maize centromeres at synthetic sequence arrays. A LexA-CENH3 fusion protein was used to recruit native Centromeric Histone H3 (CENH3) to long arrays of LexO repeats on a chromosome arm. Newly recruited CENH3 was sufficient to organize functional kinetochores that caused chromosome breakage, releasing chromosome fragments that were passed through meiosis and into progeny. Several fragments formed independent neochromosomes with centromeres localized over the LexO repeat arrays. The new centromeres were self-sustaining and transmitted neochromosomes to subsequent generations in the absence of the LexA-CENH3 activator. Our results demonstrate the feasibility of using synthetic centromeres for karyotype engineering applications.more » « less
-
Gent, Jonathan I.; Higgins, Kaitlin M.; Swentowsky, Kyle W.; Fu, Fang-Fang; Zeng, Yibing; Kim, Dong won; Dawe, R. Kelly; Springer, Nathan M.; Anderson, Sarah N. (, The Plant Cell)Abstract Demethylation of transposons can activate the expression of nearby genes and cause imprinted gene expression in the endosperm; this demethylation is hypothesized to lead to expression of transposon small interfering RNAs (siRNAs) that reinforce silencing in the next generation through transfer either into egg or embryo. Here we describe maize (Zea mays) maternal derepression of r1 (mdr1), which encodes a DNA glycosylase with homology to Arabidopsis thaliana DEMETER and which is partially responsible for demethylation of thousands of regions in endosperm. Instead of promoting siRNA expression in endosperm, MDR1 activity inhibits it. Methylation of most repetitive DNA elements in endosperm is not significantly affected by MDR1, with an exception of Helitrons. While maternally-expressed imprinted genes preferentially overlap with MDR1 demethylated regions, the majority of genes that overlap demethylated regions are not imprinted. Double mutant megagametophytes lacking both MDR1 and its close homolog DNG102 result in early seed failure, and double mutant microgametophytes fail pre-fertilization. These data establish DNA demethylation by glycosylases as essential in maize endosperm and pollen and suggest that neither transposon repression nor genomic imprinting is its main function in endosperm.more » « less
An official website of the United States government
